

Potential to close the nutrient gap through the use of source separated human urine.

Robin Walker

[Image: John.E.Robertson, flickr.com.]

Crop nutrient input costs

- Crop fertility inputs can be expensive
 - Particularly for conventional farms
 - N & P currently very high
 - Linked to energy use in manufacture / transport
 - Not just conventional farms though
 - Organic farms aim to close the nutrient cycle
 - Not always easy
 - Some imported fertility can be useful at times
 - Recycling is a key philosophy associated with organic farming
 - Opportunity to reduce costs

What role might source separated human urine play in closing the nutrient gap?

以 SAC

- Boundaries need to be adjusted beyond the farm gate
 - Recycling nutrients from communities onto farm
 - Reduction in potable water use
 - Toilet flushing (~70% less water)
 - Potential to reduce volume / energy associated with grey water treatment
 - Reduced volume / N & P loading

Is urine as a fertiliser a new idea?

• No

- Been around for many centuries
- Still frequently used in developing countries
- Lost its appeal in developed countries
 - Advent of cheap fertilisers
 - Social acceptability

Nutrient value / volume

- Domestic wastewater contains dirty water from kitchen and shower waste as well as sewage from toilets
- Urine is the fraction containing most of the key plant nutrients entering the system
 - 80% of the N
 - 55% of the P
 - -60% of the K
- Urine approx 1% of wastewater volume

Nutrient content of urine (g / L)

Refs	Tot-N	NH4-N + NH3-N	Ρ	Κ	S
Carlsson (1995)	2.6	1.7	0.19	0.45	
Carlsson (1995)	1.8	1.6	0.11	0.36	
Jönsson et al (1998)	3.5	3.4	0.31	0.94	0.33
Kvarmo (1998)	3.7	3.3	0.27	1.22	0.33
Lundström & Lindén (2001)	2.5	2.1	0.25	0.70	
Olsson (1995)	2.4	2.2	0.24	0.65	0.20
Pettersson (1994)	2.2	2.1	0.21	1.00	0.20
Vinnerås (1998)	2.3	2.1	0.14	0.48	0.17

Various studies in Sweden (diet not hugely different to UK)

Current important EU legislation – source separated urine use

- Water Framework Directive (2000/60/EC)
- Nitrates Directive (91/676/EEC
- Wastewater Directive (91/271/EEC)
- Sewage Sludge Directive (86/278/EEC)
 - No definition of source separated human urine in this directive
- Organic (Council Regulation EEC No 2092/91)
 - List of recognised fertilisers allowed on organics (source separated human urine not on it)
- Need to comply with all of these (and other relevant legislation) / guidance
 - E.g. planning, GAP, WHO, etc

Legislation & source separated human urine use

- Use of sanitised excreta for use in agriculture often falls outside existing regulatory framework
 - With the exception of EU organic regulation
 - Interdisciplinary nature may not help
- Public health and environmental protection are major drivers
- Also need a focus on agricultural legislation

 As this is its primary intended use

Production / storage / treatment

- Each person produces around 0.8 -1.5L urine / day
- Need to keep urine free of faeces
 - Fresh uncontaminated urine contains few enteric microorganisms
 - Faeces contain high levels
 - Including pathogens and opportunistic pathogens
 - Even if person infected shows no symptoms
 - Evidence that suitable storage can provide safe levels of
 - Pathogens, pharmacological & hormone residues (Stinzing, 2007)

Storage guidelines – human urine

Table 1: Recommended guideline storage times for urine^a based on estimated pathogen content^b and recommended crop for larger systems^c (WHO, 2006).

Storage temperature	Storage time	Possible pathogens in the urine mixture after storage	Recommended crops
4°C	≥1 month	Viruses, protozoa	Food and fodder crops that are to be processed
4°C	≥6 months	Viruses	Food crops that are to be processed, fodder crops ^d
20 °C	≥1 month	Viruses	Food crops that are to be processed, fodder crops ^d
20 ℃	≥6 months	Probably none	All crops ^e

WHO. 2006. Guidelines for the Safe Use of Wastewater, Excreta and Greywater. Volume IV – Ecxreta and Greywater Use in Agriculture.

http://www.who.int/water_sanitation_health/wastewater/gsuweg4/en/index.html

Some Issues

Specialist collection systems

- Different infrastructure from current flush / centralised system
- Hygiene
- Storage volume / time
- Pipes
 - Corrosion / ammonium
 - Use plastic
 - Precipitation (struvite)
- Transport
 - Bulky / cost / distance from collection point
- Application
 - Same as livestock slurries, etc

Use in agriculture

- Composition in relation to heavy metals, organic pollutants, pathogens, pharmaceuticals and nutrients need to be guaranteed
 - Level of Cd in human urine often lower than Cd-free fertilisers
 - Risk of pharmaceuticals needs care

- 1 ha grain typically requires 100 kg N
 25 people needed to supply this urine
- Smaller scale use

Energy / LCA (e.g. Tidåker, 2003)

- Sustainability in the future likely to rely more on recycling than present
- N & P emissions to water can be lowered
- Recycling of nutrients to plants can be increased
- Minor decrease in GWP-gases
 - Avoidance of mineral fertilisers
 - Larger if electricity based on fossil fuels
 - Economic costs linked to this also

- Construction phase of specialist system may contribute significantly to energy use, at least in initial stages
 - Effect on existing wastewater treatment also important
- In Tidåker's study, urine transport of more than 40km one-way would NOT exceed total primary energy of the conventional scenario

Public acceptance as a fertiliser

- Drawback / barriers
 - Generally high acceptance
 - Some concerns with respect to pathogens and micropollutants

- Improvements / recommendations
 - Storage / processing to remove pathogens
 - Clear communication strategy / positive attitude
 - Project managers / communities / authorities

Lienert & Larsen (2009) High acceptance of urine source separation in seven European countries: A review. Environ. Sci. Technol. 44, 556-566

Farmer acceptance

• KVL (Denmark)

- Source separated human urine regularly used in trials
 - Delivered from diverting toilets in eco-villages
- Initially strong resistance / debate about its use
 - Many meetings / authority input / safety concerns
- A few years down the line and there is no animosity
 - Workers take a pride in its use
 - Favour its use over sewage sludge

- Technically possible to design effective integrated waste management systems
 - Close to cost level of current conventional sanitation systems
- Drivers for change to current centralised sewage systems
 - Government policy (sustainability drive)
 - Grass roots motivation
 - Economic incentives uncertain / small

Future use of human urine in organic agriculture

- Currently not allowed
- Open for debate
 - How closely does it link with general organic philosophy of recycling?
 - What are the major draw backs in principle?
 - What are the major drawbacks on a practical level?
 - Other?

